导航栏 ×
你的位置: 范文网 > 合同范本 > 导航

人教版五年级上册数学《整数乘法运算定律推广到小数》教案

发表时间:2025-03-14

人教版五年级上册数学《整数乘法运算定律推广到小数》教案(范本4篇)。

人教版五年级上册数学《整数乘法运算定律推广到小数》教案 篇1

1教学目标

1.知识与技能:通过猜测-验证-应用等环节引导学生探索并理解整数乘法运算定律对于小数同样适用

2.过程与方法:能够正确、合理、灵活的运用乘法运算定律进行有关小数乘法的简便运算。

3.情感态度与价值观:让学生相互交流、合作、体验成功的喜悦

2学情分析

五年级的孩子们大部分已养成良好的学习习惯,能在课堂上大胆地表达自己的见解。因此在本堂课的教学中,我充分调动学生的积极性,提高学生课堂活动的参与性,让他们通过亲自探索和体验来达到掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。

3教学重难点

本课的教学重点是:探索、发现、理解整数乘法运算定律,在小数乘法中同样适用。

教学难点则是:运用运算定律进行小数乘法的简便计算。

4教学过程

4.1第一学时

4.1.1教学活动

活动1【导入】一、复习旧知,引入新课

(一)引导学生回忆整数乘法中学过哪些运算定律,对它们有哪些了解?

(1)0.5×0.2= (2)50×0.2= (3)500×0.2=

(4) 2.5×4= (5)2.5×0.4= (6)0.25×40=

(7)0.125×8= (8)12.5×8= (9)1.25×80=

学生从运算定律的内容、运算定律的字母表达式和应用运算定律怎样使计算简便这三个方面思考老师提出的问题,再和全班同学交流自己的想法。

乘法交换律:a×b=b×a

乘法结合律:(a×b) ×c = a× (b×c)

乘法分配律:(a+b) ×c = a×c+b×c

(二)在整数乘法中应用运算定律可以使一些计算变得简单,那么对于小数乘法这些运算定律是否也适用呢?下面我们就一起来研究问题。(板书课题)

活动2【讲授】二、探索新知,在游戏中探究发现、总结并应用规律

(一)验证整数乘法的运算定律对于小数乘法同样适用。

1.猜想验证。

观察每组的两个算式,它们有什么关系?

0.7×1.2 1.2×0.7

(0.8×0.5)×0.4 0.8×(0.5×0.4)

2.4+3.6)×0.5 2.4×0.5+3.6×0.5Www.551336.CoM

出示第12页例7上面的内容。怎样验证小精灵的猜想对不对呢?

2.验证。

3.交流、汇报自己的发现。

4.小结:我们通过实例推导证明了整数乘法的运算定律对于小数乘法同样适用。那么我们就可以利用乘法的运算定律来解决小数乘法的实际问题了。

(二)教学例7

1.课件出示例7(1)运用运算定律计算

请你试着做一做,并说一说每一步各应用了哪一个运算定律。(强调:注意观察数的特点。)

运用运算定律计算

0.25×4.78×4

=

=

=

0.65×202

=

=

=

(1)引导学生观察、讨论因数有什么样的特征及怎样计算才能更简便,然后独立完成。

(2)集体订正,学生汇报自己的计算过程,教师板书。

3.小结:在小数乘法中,要使计算简便,我们应该注意什么?

在计算时应先观察各个数的特点,看其是否符合某一乘法运算定律,再计算。

活动3【练习】三、巩固练习

完成教材第12页“做一做”1、2题

活动4【活动】四、课堂总结

通过今天的学习,你有什么收获?

人教版五年级上册数学《整数乘法运算定律推广到小数》教案 篇2

教学目标

1、通过猜想验证等活动,理解整数运算定律同样适用于小数乘法。

2、能运用乘法运算定律对小数乘法进行简便计算。

3、培养学生自觉进行简算的意识,提高思维的灵活性。

重点难点

理解整数乘法运算定律对于小数同样适用。

会运用乘法运算定律进行小数乘法的简便计算。

教学过程

3.1第一学时

3.1.1教学活动

活动1【导入】一、复习铺垫

师:同学们,今天这节课我们将做一些计算方面的研究,你觉得要做计算研究你自身得具备些什么?(仔细,敏锐的观察力)(板书观察)

师:我们先来小试牛刀!

1、学生口答1.8×20.2×1.91.9+0.6

0.125×825×0.42.4-0.5

2、混合运算(口答):22-18+60.2+(1.5-0.8)(说一说,先算什么再算什么?)

师:是的,我们知道小数加减混合的顺序跟整数一样。

50-12×40.8+0.4×0.2(这里有新学的小数乘法,你还会吗)

师小结:你们的意思是,小数的加减乘除四则混合运算的顺序跟整数也是一样的?

师:确实如此,(课件出示)我们一起来读一下。(板书:整数)

师:你看,整数和小数的关系是多么的密切呀!

3、简便计算(加法运算定律)

7.5+1.8+0.2(你是怎么算的?你是运用了……?)

师小结:是呀,在以前的学习中我们还知道“整数加法的运算定律适用于小数加法”。

(磁贴:整数加法运算定律适用于小数加法)

活动2【活动】二、合作探究,探索新知:

1、整理提升,提出猜想

师:现在我们又学习了小数乘法,由此你联想到了什么?

(板书:整数乘法运算定律适用?于小数乘法)

生:整数乘法运算定律适用于小数乘法?(让学生重复一遍:你听到他刚说了什么?)

师:整数乘法运算定律到底适不适用用于小数乘法呢?对此我们还存在疑问(板书:?)需要我们来验证。那么怎样来验证呢?(板书:举例)

师提示:诶,我们可以借助以前学习“整数加法运算定律推广到小数”的经验,回想一下我们是怎么探究的?

生:首先回想有哪几个加法运算定律,再举例,计算一下看看两边是不是相等的……

师:那怎样验证乘法运算定律呢?举例之前,首先回忆一下有哪些定律?再举例(板书定律)。

2、律验证猜想

师:看来大家已经有了想法,我把这个任务交给你们,能完成吗?我们可以借助这张探究记录单来完成,先看一看,想想我们需要做些什么?

师:读一读方法提示,读的时候想一想注意什么?

方法提示:写一写:根据每个乘法定律编一些小数乘法的例子。

算一算:算出两边算式的结果,看是否相等。

想一想:通过举例,你有什么发现?

师:举例是要注意什么?(举小数乘法的例子)

独立验证:一曲音乐的时间,独立完成探究记录单。

探究记录单

整数乘法运算定律是否适用于小数乘法?

乘法运算定律

举例说明

我的结论:

乘法律

乘法律

乘法律

汇报。

学生汇报

教师相应板书在黑板上。

师反问:其它同学根据乘法运算定律举出的例子,计算时发现两边不相等的有吗?

师:如果给你们足够多的时间,像这样的例子你举得完吗?(板书:……)

师追问:那你能用一个式子简明的概括它们吗?(板书:字母式)(一个一个来)

板书同时教师完整表述:乘法交换律:交换两个因数的位置,积不变。

乘法结合律:先乘前两个数或者先乘后两个数,积不变。

乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。

得出结论:

师:通过同学们的举例验证,消除了我们的疑问,一致认为……(擦掉?)

师:来,请你一起自豪的读一读我们的发现。

加深理解:

师:现在我们知道,这里的字母不仅可以表示“整数”,也可能是“小数”(板书:小数)

活动3【练习】三、实践应用

师:下面我们用所学的知识快速填一填,并说说你是怎么想的?

1、快乐填一填

4.2×1.96=×

2.5×(0.4×0.77)=(×)×

7.2×8.4+2.8×8.4=(+)×

7.2×8.4+×=(+)×

师:还能怎么填?注意听,你发现他是将两个数都成--(8.4或7.2)

填的完吗?但无论怎么填,我们都要保证有一个……(共同因数)

师小结:是呀,同学们在填写的过程中已经开始关注运算定律的“结构”了。(板书:结构)

2、简便计算

课件隐去拓展部分,提问:对于这个算式你能快速算出它的得数吗?你是在计算--(右边)

追问:如果以后碰到的是左边的算式呢?

生:根据乘法分配律转化为右边的形式。

师:看来,应用乘法的运算定律,可以使一些计算简便。

师:接下来我们来试一试。(学生独立尝试,板演并说想法)

(1)0.25×4.78×4师追问:你为什么想到把0.25和4先乘?你还碰到过像这样的数字朋友吗?比如说……

0.65×202师追问:为什么把202拆成两数之和的形式呢?(板书:+)为什么是200和2?强调:200×0.65和2×0.65都很简便。

师:我发现,大家在简便计算时,都做到了观察“数据”并对数据进行了合理的处理。

师:下面我们就来突破下自己,老师为大家准备了更有挑战性的计算,有信心吗?

(2)4.75×101-4.750.125×1613.7-3.7×3

全班学生先自己尝试解决,投影校对。

将学生作业收两份上来。(最后一题一个对,一个错进行对比)

师:他会这样做的原因是什么?看来他只关注了数据,而忽略了……(手指向乘法分配律)

如果要按他的方法解答,题目得怎么修改?13.7×3-3.7×3

师:学到这,你有什么要提醒大家的?

生:观察时不仅关注数据还要关注结构。(教师再次强调)

小结:我们发现有些算式符合运算定律的结构,并能对数据适当处理,确实能让计算变得“简便”(板书)。而有些不符合结构或数据没有特点的,就不能简便了,可以按四则混合运算的顺序进行计算。

3、连线练习

师:接下来我们就在观察结构和数据上突破自己,先观察,再连线!

4.8×9.96.7×a+a37.6×99+376×0.1

(6.7+1)×a37.6×(99+0.1)4.8×10-4.8×0.1

对于第三个:师:你们都连好了,那剩下的两个无疑就是一组了!……怎么了?

师:观察下面这个算式,将上面的算式怎么修改?

如果保持上面的算式不变,又怎么改变下面的算式呢?

师:由此可见,观察是多么重要啊!

4、解决问题

师过渡:同学们,刚才我们在计算中研究了小数乘法运算定律,其实,这样的定律在我们生活中也随处可见:

赵大伯在一块长方形菜地里种了茄子和辣椒,

4m茄子辣椒

7.5m2.5m

问:赵大伯家的菜地有多大?(请你用不同的方法解决)

学生独立完成,并分别完整汇报方法。

追问:你是怎么想的?(理解算式的`意义和数量关系)

师:你看,除了计算,生活中的问题也帮我们验证了哪个运算定律。

拓展:出示长a,b,宽c,你还能表示出它的面积吗?(课件:字母式)

师:在图形面积计算上,你发现了吗?

师小结:同学们,我们思考的角度和证明的方法有很多,但都证明了……(读题)

只要我们做学习和生活的有心人,你就会离知识更近!

活动4【作业】

三、拓展延伸

师:今天我们收获了什么?我们是怎样获得知识的?

师小结:在学习整数乘法运算定律适用于小数乘法之前,我们已经学习了整数加法运算定律适用小数加法,用以前的学习经验帮助了我们今天的学习,得出了结论,使我们的知识越来越完整,概括为一句话:整数的运算定律都适用于小数。

师:同学们,今天我们通过自己的努力,成功得将“整数乘法运算定律推广到小数”,我们还学过什么数?(板书:分数),那请你来猜猜看,以后我们可能还会学什么知识,今后我们也可以像这节课一样来研究。

人教版五年级上册数学《整数乘法运算定律推广到小数》教案 篇3

教学目标:

知识与技能目标

通过猜测—验证—应用等环节引导学生探索并理解整数乘法运算定律对于小数同样适用

过程与方法目标

能够正确、合理、灵活的运用乘法运算定律进行有关小数乘法的简便运算。

情感态度与价值观目标

让学生相互交流、合作、体验成功的喜悦

教学重点:

探索、发现、理解整数乘法运算定律,在小数乘法中同样适用。

教学难点:

运用运算定律进行小数乘法的简便计算。

学情分析:

五年级的孩子们大部分已养成良好的学习习惯,能在课堂上大胆地表达自己的见解。因此在本堂课的教学中,我充分调动学生的积极性,提高学生课堂活动的参与性,让他们通过亲自探索和体验来达到掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。

教法学法:

本节课我主要采用“自主探究,合作交流,汇报验证”等教学方法。通过创设生动的教学情景,激发学生的求知欲。使学生在观察中发现,在探究中交流,在合作中归纳解决问题。具体地说分为以下几种方法:

1、情景创设法。

2、活动探究法。

3、集体讨论法。

教学流程:

创设情景,导入新课——自主探索,解决问题——精心选题,多层训练,——质疑总结,反思评价。

第一环节:创设情境,导入新课。

上课伊始,我会向孩子们抛出一个问题:同学们,我们已经学习了整数乘法的一些运算定律,谁能来说一说整数乘法的运算定律有哪些?

学生们会回答:乘法交换律、乘法结合律和乘法分配律。

接着我会让孩子们用数字、字母或者符号等自己喜欢的方式来表示出这三个定律。学生展示后,我进行小结:我们知道乘法运算定律在整数乘法中,可以使一些计算更简便了,那么在小数乘法中,这些运算定律是否也能运用呢?今天这节课我们就来研究这个问题。同时板书课题。

在这一环节中让孩子们用自己喜欢的方式表示三个定律,一方面激发他们学习的兴趣,另一方面复习巩固所学的知识,为学习新课作准备。以旧引新,激发孩子的探究热情,让他们有目标的去思考。

第二环节:自主探索,解决问题。

本环节我设计了以下几个教学活动。

(一)小组合作,猜测验证

1、用幻灯片出示以下题目。

0.7×1.2○1.2×0.7

(0.8×0.5)×0.4○0.8×(0.5×0.4)

(2.4+3.6)×0.5○2.4×0.5+3.6×0.5

让孩子们猜一猜,每一组算式它们有怎样的关系?(当然由于是猜测,学生出现的答案很可能会不一样。)

2、学生自己探究,验证。

让学生以小组为单位通过计算得出结论,原来每组算式的结果都是相等的。

接着我引导学生们仔细观察每一组算式,它们有什么特点?

学生们通过观察会得出如下结论:第一组算式运用了乘法交换律,第二组算式运用了乘法结合律,第三组算式运用了乘法分配律。

3、举例验证。

我向孩子们提问:通过上面的一组例子,能否就说明乘法运算定律在小数乘法中同样适用?

孩子们可能有两种意见:能或是不能。

针对不同意见,我会引导他们:对,单纯的一组例子并没有说服力,我们需要多举几个例子进行验证。下面咱们就以小组为单位仿照第一组的例子,也写出三种这样的算式,并验证是否相等。

(给孩子们充分的时间动手写,验证后让他们进行汇报,尽量多让几组学生汇报,这样例子多了,结论更有说服力。)

学生汇报的同时,我会有目的的板书几组算式,让学生观察发现,乘法运算定律,在小数乘法中同样适用。

在大家交流结束后,我这样引导他们:刚刚小组同学相互交流后,你能用一句话来概括你们的发现吗?(引导学生得出结论:整数乘法的运算定律在小数乘法中同样适用。)

在这一环节中我首先让学生进行猜测,在头脑中初步感知每一组算式之间的关系,然后进行验证,进一步理解每一组算式之间的关系,再次启发学生自己举例验证,让他们通过自己动手动脑,以及倾听其他同学的发言,从而得出结论。在这一环节中,教师的作用只是引导点拨,决不把规律强加给学生,而是让学生自己去猜测、发现、验证。

(二)灵活应用,解决问题

出示例题8

师:同学们,仔细观察下面两题,看看它们能不能用简便方法计算。

0.25×4.78×4 0.65×201

(1)让学生独立思考,然后尝试写在练习本上。

(2)指名让学生板演。

然后我会让孩子们思考:第①题中为什么先让0.25和4相乘?这里运用了什么运算定律呢?

孩子们会自然而然的答出:运用了乘法交换律

接着问他们:你们认为第②小题中解题的关键是什么?

学生会根据以往的知识答出:把201分成200+1,然后用乘法分配律完成。(因为乘法分配率在上学期的学习中就是一个难点,所以这里我也会强调一下,让孩子们体会到先把特殊的数进行分解,然后才能进行简算。)

然后继续提问:在小数乘法中,要使计算简便,我们应该注意什么?(启发学生思考,认真审题,要观察数的特点等。)

在这一环节里,让孩子们运用所学的知识解决问题,这是数学学习的目的。学生通过自己动脑想,尝试用乘法的运算定律使计算简便,激发了他们运用知识解决问题的热情,同时使学生体会到运用乘法运算定律的简便性,并体验到成功的快乐。

第三环节:精心选题,多层训练。

本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组(基本题、变式题、拓展题、开放题)。

练习题组设计如下

通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。

第四环节:质疑总结,反思评价。

用幻灯片出示以下两个问题

让学生以小组为单位,每位学生充分发言,交流学习所得。在评价方面:先让学生自评,接着让他们互评,最后我会表扬全班学生,以增强学生的自信心和荣誉感,使他们更加热爱数学。

在本环节通过交流学习所得,增强孩子们学习数学知识的信心,培养了他们敢于质疑、勇于创新的精神。

人教版五年级上册数学《整数乘法运算定律推广到小数》教案 篇4

教学内容:

课本第21页。

教学目标:

1、使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积

2、能运用所学知识解决生活中组合图形的实际问题。

3、自主探索,合作交流。培养学生认真思考,团结协作的能力。

4、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

教学重点:

探索并掌握组合图形的面积计算方法。

教学难点:

理解并掌握组合图形的组合及分解方法。

教学准备:

课件

教学过程:

一、创设情境,激趣导入。

1、同学们,我们已经学习了哪些多平面图形?

导学要点:

请同学们看大屏幕,认识组合图形。像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。

2、感知:组合图形在我们生活中的应用很广泛(生举例),今天,我们就结合一个生活中的例子来学习组合图形的面积。

板书:组合图形的面积

二、小组合作探究

1、出示前置性作业小组交流

复习

(1)说说你学过哪些平面图形?

(2)说说这些图形的面积计算公式?

2、自学21页的例10

(1)导学单

1)小组合作将组合图形分成我们学习过的图形。说说你的分法,你是怎样想的?

2)尝试计算每个图形的面积。

3)思考:组合图形的面积是怎样计算出来的?

导学要点:

(1)分割法:将整体分成几个基本图形,求出它们的面积和。

(2)添补法:用一个大图形减去一个小图形求出组合图形的面积。

师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

(2)小组交流

1)从例题中我们可以看出,同一个组合图形,我们可以运用怎样的方法来解决?

2)由于方法不同,我们计算组合图形的方法有什么不同?

3)求组合图形面积时关键是做什么?

导学要点:

(1)要根据原来图形的特点进行思考。

(2)要便于利用已知条件计算简单图形的面积。

(3)可以用不同的方法进行割补。

(3)全班交流

1)学生举例并解答(前置作业我的例子)

2)结合学生自己举的例子解答讲解。

三、应用新知,解决问题

1、课本第21页练一练

(1)生独立计算。

(2)生展示思路。

点拨:

计算组合图形的面积的基本策略:把原来的图形先分割成几个基本图形,再求这几个基本图形的面积只和;或者先把原来的图形拼补一个基本图形,再求相关基本图形面积之差。

2、课本第23页练习四第1题前两题。

点拨:

(1)引导说说第一个图形梯形的上下底和高各是多少?是怎样看出来的?

(2)引导说说第二个图形三角形的底是多少厘米?是怎样看出来的?

3、课本第23页练习四第二题

点拨:

引导说说组合图形面积的计算方法。

四、课堂总结

通过这节课的学习,你学到了什么知识呢?

教学反思: